仇恨言论在社交媒体领域的传播目前是一个严重的问题。对这些平台上生成的大量信息的不符合访问导致人们发布和反应发起暴力的有毒内容。尽管已经努力在线检测和限制此类内容,但准确识别它仍然具有挑战性。基于深度学习的解决方案一直处于识别可恶内容的最前沿。但是,诸如仇恨言论的上下文依赖性,用户的意图,不希望的偏见等因素使这个过程过度批评。在这项工作中,我们通过提出这些问题的层次结构组织来深入探索自动仇恨言论检测的广泛挑战。我们专注于机器学习或基于深度学习的解决方案所面临的挑战。在最高级别,我们将数据级别,模型级别和人类级别的挑战区分开。我们进一步提供了详细的分析层次结构的示例。这项调查将帮助研究人员在仇恨言论检测领域更有效地设计其解决方案。
translated by 谷歌翻译
情绪分析是最基本的NLP任务,用于确定文本数据的极性。在多语言文本领域也有很多工作。仍然讨厌和令人反感的语音检测面临着挑战,这是由于数据的可用性不足,特别是印度和马拉地赛等印度语言。在这项工作中,我们考虑了印地语和马拉地养文本的仇恨和令人反感的语音检测。使用艺术的深度学习方法的状态制定了该问题作为文本分类任务。我们探讨了CNN,LSTM等不同的深度学习架构,以及多语言伯爵,烟草和单晶罗伯塔等伯特的变化。基于CNN和LSTM的基本模型将使用快文文本嵌入式增强。我们使用HASOC 2021 HINDI和MARATHI讨论语音数据集来比较这些算法。 Marathi DataSet由二进制标签和后印度数据集组成,包括二进制和更精细的粗糙标签。我们表明,基于变压器的模型表现了最佳甚至基本型号以及FastText Embeddings的基本模型具有竞争性能。此外,通过普通的超参数调谐,基本模型比细粒度的Hindi数据集上的基于BERT的模型更好。
translated by 谷歌翻译
Coronary Computed Tomography Angiography (CCTA) provides information on the presence, extent, and severity of obstructive coronary artery disease. Large-scale clinical studies analyzing CCTA-derived metrics typically require ground-truth validation in the form of high-fidelity 3D intravascular imaging. However, manual rigid alignment of intravascular images to corresponding CCTA images is both time consuming and user-dependent. Moreover, intravascular modalities suffer from several non-rigid motion-induced distortions arising from distortions in the imaging catheter path. To address these issues, we here present a semi-automatic segmentation-based framework for both rigid and non-rigid matching of intravascular images to CCTA images. We formulate the problem in terms of finding the optimal \emph{virtual catheter path} that samples the CCTA data to recapitulate the coronary artery morphology found in the intravascular image. We validate our co-registration framework on a cohort of $n=40$ patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our results indicate that our non-rigid registration significantly outperforms other co-registration approaches for luminal bifurcation alignment in both longitudinal (mean mismatch: 3.3 frames) and rotational directions (mean mismatch: 28.6 degrees). By providing a differentiable framework for automatic multi-modal intravascular data fusion, our developed co-registration modules significantly reduces the manual effort required to conduct large-scale multi-modal clinical studies while also providing a solid foundation for the development of machine learning-based co-registration approaches.
translated by 谷歌翻译
The Information Bottleneck theory provides a theoretical and computational framework for finding approximate minimum sufficient statistics. Analysis of the Stochastic Gradient Descent (SGD) training of a neural network on a toy problem has shown the existence of two phases, fitting and compression. In this work, we analyze the SGD training process of a Deep Neural Network on MNIST classification and confirm the existence of two phases of SGD training. We also propose a setup for estimating the mutual information for a Deep Neural Network through Variational Inference.
translated by 谷歌翻译
Modern telecom systems are monitored with performance and system logs from multiple application layers and components. Detecting anomalous events from these logs is key to identify security breaches, resource over-utilization, critical/fatal errors, etc. Current supervised log anomaly detection frameworks tend to perform poorly on new types or signatures of anomalies with few or unseen samples in the training data. In this work, we propose a meta-learning-based log anomaly detection framework (LogAnMeta) for detecting anomalies from sequence of log events with few samples. LoganMeta train a hybrid few-shot classifier in an episodic manner. The experimental results demonstrate the efficacy of our proposed method
translated by 谷歌翻译
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
translated by 谷歌翻译
Non-parametric tests can determine the better of two stochastic optimization algorithms when benchmarking results are ordinal, like the final fitness values of multiple trials. For many benchmarks, however, a trial can also terminate once it reaches a pre-specified target value. When only some trials reach the target value, two variables characterize a trial's outcome: the time it takes to reach the target value (or not) and its final fitness value. This paper describes a simple way to impose linear order on this two-variable trial data set so that traditional non-parametric methods can determine the better algorithm when neither dominates. We illustrate the method with the Mann-Whitney U-test. A simulation demonstrates that U-scores are much more effective than dominance when tasked with identifying the better of two algorithms. We test U-scores by having them determine the winners of the CEC 2022 Special Session and Competition on Real-Parameter Numerical Optimization.
translated by 谷歌翻译
The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth achieves an optimal in-expectation risk bound in the standard PAC classification setup. In one of the first COLT open problems, Warmuth conjectured that this prediction strategy always implies an optimal high probability bound on the risk, and hence is also an optimal PAC algorithm. We refute this conjecture in the strongest sense: for any practically interesting Vapnik-Chervonenkis class, we provide an in-expectation optimal one-inclusion graph algorithm whose high probability risk bound cannot go beyond that implied by Markov's inequality. Our construction of these poorly performing one-inclusion graph algorithms uses Varshamov-Tenengolts error correcting codes. Our negative result has several implications. First, it shows that the same poor high-probability performance is inherited by several recent prediction strategies based on generalizations of the one-inclusion graph algorithm. Second, our analysis shows yet another statistical problem that enjoys an estimator that is provably optimal in expectation via a leave-one-out argument, but fails in the high-probability regime. This discrepancy occurs despite the boundedness of the binary loss for which arguments based on concentration inequalities often provide sharp high probability risk bounds.
translated by 谷歌翻译
Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1082 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions.
translated by 谷歌翻译
Indian e-commerce industry has evolved over the last decade and is expected to grow over the next few years. The focus has now shifted to turnaround time (TAT) due to the emergence of many third-party logistics providers and higher customer expectations. The key consideration for delivery providers is to balance their overall operating costs while meeting the promised TAT to their customers. E-commerce delivery partners operate through a network of facilities whose strategic locations help to run the operations efficiently. In this work, we identify the locations of hubs throughout the country and their corresponding mapping with the distribution centers. The objective is to minimize the total network costs with TAT adherence. We use Genetic Algorithm and leverage business constraints to reduce the solution search space and hence the solution time. The results indicate an improvement of 9.73% in TAT compliance compared with the current scenario.
translated by 谷歌翻译